:heavy_check_mark: test/library_checker/data_structure/dynamic_sequence_range_affine_range_sum.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum
#include "../../../data-structure/lazy-splaytree.hpp"
#include <atcoder/modint>
using mint = atcoder::modint998244353;
struct S {
    mint a, sz;
};
static S op(S s, S t) { return S(s.a + t.a, s.sz + t.sz); }
static S e() { return S(0, 0); }
struct F {
    mint b, c;
    bool operator==(const F &other) const {
        return b == other.b && c == other.c;
    }
};
static S mapping(F f, S s) { return S(f.b * s.a + f.c * s.sz, s.sz); }
static F composition(F f, F g) {
    // composition(f,g)(s) = f(g(s))
    return F(f.b * g.b, f.b * g.c + f.c);
}
static F id() { return F(1, 0); }

void solve() {
    LL(n, q);
    vector<S> v(n);
    rep(i, n) {
        LL(val);
        v[i] = S(val, 1);
    }
    SplayTree<S, op, e, F, mapping, composition, id> st(v);
    rep(t, q) {
        LL(flag);
        if(flag == 0) {
            LL(i, x);
            st.insert_at(i, S(x, 1));
        } else if(flag == 1) {
            LL(i);
            st.remove_at(i);
        } else if(flag == 2) {
            LL(l, r);
            st.reverse(l, r);
        } else if(flag == 3) {
            LL(l, r, b, c);
            st.apply(l, r, F(b, c));
        } else {
            LL(l, r);
            print(st.prod(l, r).a.val());
        }
    }
}

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    solve();
}
#line 1 "test/library_checker/data_structure/dynamic_sequence_range_affine_range_sum.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum
#line 2 "other/fastio.hpp"
// ref: https://maspypy.com/library-checker-many-a-b , NyaanуБХуВУ
#line 2 "other/type-utils.hpp"
#include <bits/stdc++.h>
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = std::vector<int>;
using vii = std::vector<std::vector<int>>;
using pii = std::pair<int, int>;
using vl = std::vector<ll>;
using vll = std::vector<vl>;
using pll = std::pair<ll, ll>;

template <class T>
concept extended_integral =
    std::integral<T> || std::same_as<std::remove_cv_t<T>, i128> ||
    std::same_as<std::remove_cv_t<T>, u128>;
template <class T>
concept extended_signed_integral =
    std::signed_integral<T> || std::same_as<std::remove_cv_t<T>, i128>;
template <class T>
concept extended_unsigned_integral =
    std::unsigned_integral<T> || std::same_as<std::remove_cv_t<T>, u128>;

template <class T>
concept Streamable =
    requires(std::ostream &os, T &x) { os << x; } || extended_integral<T>;
template <class mint>
concept is_modint = requires(mint &x) {
    { x.val() } -> std::convertible_to<int>;
};
#line 4 "other/fastio.hpp"
namespace fastio {
constexpr int SZ = 1 << 17;
constexpr int offset = 64;
constexpr int mod = 10000;
char in_buf[SZ];
int in_left{}, in_right{};
char out_buf[SZ];
char out_tmp[offset];
int out_right{};
struct Pre {
    char num[4 * mod]{};
    constexpr Pre() {
        for(int i = 0; i < mod; ++i) {
            for(int n = i, j = 3; j >= 0; --j, n /= 10)
                num[4 * i + j] = '0' + n % 10;
        }
    }
    constexpr const char *operator[](int i) const { return &num[4 * i]; }
} constexpr pre;
void load() {
    memmove(in_buf, in_buf + in_left, in_right - in_left);
    in_right += -in_left + std::fread(in_buf + in_right - in_left, 1,
                                      SZ - (in_right - in_left), stdin);
    in_left = 0;
    if(in_right < SZ)
        in_buf[in_right++] = '\n';
}
void read(char &c) {
    do {
        if(in_left == in_right)
            load();
        c = in_buf[in_left++];
    } while(isspace(c));
}
void read(std::string &s) {
    s.clear();
    char c;
    do {
        if(in_left == in_right)
            load();
        c = in_buf[in_left++];
    } while(isspace(c));
    do {
        s += c;
        if(in_left == in_right)
            load();
        c = in_buf[in_left++];
    } while(!isspace(c));
}
template <extended_integral T> void read(T &x) {
    if(in_right - in_left < offset)
        load();
    char c;
    do
        c = in_buf[in_left++];
    while(c < '-'); // \n:10 space:32 -:45 '0':48
    bool minus{};
    if constexpr(extended_signed_integral<T>) {
        if(c == '-') {
            c = in_buf[in_left++];
            minus = true;
        }
    }
    x = 0;
    while(c >= '0') {
        x = 10 * x + (c & 15);
        c = in_buf[in_left++];
    }
    if constexpr(extended_signed_integral<T>) {
        if(minus)
            x = -x;
    }
}
void flush() { fwrite(out_buf, 1, std::exchange(out_right, 0), stdout); }
void write_range(const char *c, int n) {
    int pos{};
    while(pos < n) {
        if(out_right == SZ)
            flush();
        int len = std::min(n - pos, SZ - out_right);
        memcpy(out_buf + out_right, c + pos, len);
        out_right += len;
        pos += len;
    }
}

void write(char c) {
    if(SZ == out_right)
        flush();
    out_buf[out_right++] = c;
}
void write(const char *c) { write_range(c, strlen(c)); }
void write(const std::string &s) { write_range(s.data(), s.size()); }
template <std::floating_point T> void write(T x) {
    int n = std::snprintf(out_tmp, sizeof(out_tmp), "%.16g", x);
    write_range(out_tmp, n);
}
void write(bool x) { write(x ? '1' : '0'); }
template <extended_integral T> void write(T x) {
    if(x == 0) {
        write('0');
    }
    if constexpr(extended_signed_integral<T>) {
        if(x < 0) {
            write('-');
            x = -x;
        }
    }
    if(SZ - out_right < offset)
        flush();
    int cur = offset;
    for(; x >= 1000; x /= mod) {
        cur -= 4;
        memcpy(out_tmp + cur, pre[x % mod], 4);
    }
    if(x >= 100) {
        cur -= 3;
        memcpy(out_tmp + cur, pre[x % mod] + 1, 3);
    } else if(x >= 10) {
        cur -= 2;
        memcpy(out_tmp + cur, pre[x % mod] + 2, 2);
    } else if(x >= 1) {
        cur -= 1;
        memcpy(out_tmp + cur, pre[x % mod] + 3, 1);
    }
    write_range(out_tmp + cur, offset - cur);
}
struct Dummy {
    // уГЧуГнуВ░уГйуГач╡Вф║ЖцЩВуБлхЗ║хКЫ
    ~Dummy() { flush(); }
} dummy;
} // namespace fastio
using fastio::write;
#line 4 "template.hpp"
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#line 8 "template.hpp"
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...)
#endif
template <Streamable T> void print_one(const T &value) { fastio::write(value); }
template <is_modint T> void print_one(const T &value) {
    print_one(value.val());
}
void print() { print_one('\n'); }
template <class T, class... Ts> void print(const T &a, const Ts &...b) {
    print_one(a);
    ((print_one(' '), print_one(b)), ...);
    print();
}
template <ranges::range Iterable>
    requires(!Streamable<Iterable>)
void print(const Iterable &v) {
    for(auto it = v.begin(); it != v.end(); ++it) {
        if(it != v.begin())
            print_one(' ');
        print_one(*it);
    }
    print();
}
#define all(v) begin(v), end(v)
template <class T> void UNIQUE(T &v) {
    ranges::sort(v);
    v.erase(unique(all(v)), end(v));
}
template <typename T> inline bool chmax(T &a, T b) {
    return ((a < b) ? (a = b, true) : (false));
}
template <typename T> inline bool chmin(T &a, T b) {
    return ((a > b) ? (a = b, true) : (false));
}
// https://trap.jp/post/1224/
template <class... T> constexpr auto min(T... a) {
    return min(initializer_list<common_type_t<T...>>{a...});
}
template <class... T> constexpr auto max(T... a) {
    return max(initializer_list<common_type_t<T...>>{a...});
}
void input() {}
template <class Head, class... Tail> void input(Head &head, Tail &...tail) {
#ifdef LOCAL
    cin >> head;
#else
    fastio::read(head);
#endif
    input(tail...);
}
template <class T> void input(vector<T> &a) {
    for(T &x : a)
        input(x);
}
#define INT(...)                                                               \
    int __VA_ARGS__;                                                           \
    input(__VA_ARGS__)
#define LL(...)                                                                \
    long long __VA_ARGS__;                                                     \
    input(__VA_ARGS__)
#define STR(...)                                                               \
    string __VA_ARGS__;                                                        \
    input(__VA_ARGS__)
#define REP1_0(n, c) REP1_1(n, c)
#define REP1_1(n, c)                                                           \
    for(ll REP_COUNTER_##c = 0; REP_COUNTER_##c < (ll)(n); REP_COUNTER_##c++)
#define REP1(n) REP1_0(n, __COUNTER__)
#define REP2(i, a) for(ll i = 0; i < (ll)(a); i++)
#define REP3(i, a, b) for(ll i = (ll)(a); i < (ll)(b); i++)
#define REP4(i, a, b, c) for(ll i = (ll)(a); i < (ll)(b); i += (ll)(c))
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
ll inf = 3e18;
vl dx = {1, -1, 0, 0};
vl dy = {0, 0, 1, -1};
template <class T> constexpr T floor(T x, T y) noexcept {
    return x / y - ((x ^ y) < 0 and x % y);
}
template <class T> constexpr T ceil(T x, T y) noexcept {
    return x / y + ((x ^ y) >= 0 and x % y);
}
// yуБочмжхП╖уБлщЦвуВПуВЙуБЪщЭЮш▓ауБзхоЪч╛й \bmod:texуВ│уГЮуГ│уГЙ
template <class T> constexpr T bmod(T x, T y) noexcept {
    T m = x % y;
    return (m < 0) ? m + (y > 0 ? y : -y) : m;
}
template <std::signed_integral T> constexpr int bit_width(T x) noexcept {
    return std::bit_width((uint64_t)x);
}
template <std::signed_integral T> constexpr int popcount(T x) noexcept {
    return std::popcount((uint64_t)x);
}
constexpr bool kth_bit(auto n, auto k) { return (n >> k) & 1; }
#line 3 "data-structure/lazy-splaytree.hpp"
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
          F (*composition)(F, F), F (*id)()>
//   composition(f,g)(x) = fтИШg(x) = f(g(x))
struct SplayTree {
  private:
    struct Node;
    using pNode = unique_ptr<Node>;
    struct Node {
        Node *left, *right, *parent;
        int size;
        S a, prod;
        F lazy;
        bool rev;
        Node()
            : left(nullptr), right(nullptr), parent(nullptr), size(1), a(e()),
              prod(e()), lazy(id()), rev(false) {}
        Node(const S &s)
            : left(nullptr), right(nullptr), parent(nullptr), size(1), a(s),
              prod(s), lazy(id()), rev(false) {}
        int state() {
            if(!this->parent)
                return 0;
            if(this->parent->left == this)
                return 1;
            if(this->parent->right == this)
                return 2;
            return 0;
        }
        void apply(const F &f) {
            a = mapping(f, a);
            prod = mapping(f, prod);
            lazy = composition(f, lazy);
        }
        void reverse() {
            swap(left, right);
            rev = !rev;
        }
        void push() {
            if(lazy != id()) {
                if(left)
                    left->apply(lazy);
                if(right)
                    right->apply(lazy);
                lazy = id();
            }
            if(rev) {
                if(left)
                    left->reverse();
                if(right)
                    right->reverse();
                rev = false;
            }
        }
        void update() {
            size = 1;
            prod = a;
            if(left) {
                size += left->size;
                prod = op(left->prod, prod);
            }
            if(right) {
                size += right->size;
                prod = op(prod, right->prod);
            }
        }
    };
    void rotate(Node *me) {
        Node *pp, *p, *c;
        p = me->parent;
        pp = p->parent;
        if(p->left == me) {
            c = me->right;
            me->right = p;
            p->left = c;
        } else {
            c = me->left;
            me->left = p;
            p->right = c;
        }
        if(pp) {
            if(pp->right == p) {
                pp->right = me;
            } else {
                pp->left = me;
            }
        }
        me->parent = pp;
        p->parent = me;
        if(c) {
            c->parent = p;
        }
    }
    void push_from_root(Node *node) {
        // ца╣уБЛуВЙуГИуГГуГЧуГАуВжуГ│уБлpush
        // https://qiita.com/ngtkana/items/4d0b84d45210771aa074#32-%E3%81%99%E3%81%B9%E3%81%A6%E3%83%88%E3%83%83%E3%83%97%E3%83%80%E3%82%A6%E3%83%B3%E3%83%95%E3%82%A7%E3%83%BC%E3%82%BA%E3%81%AB-push
        if(!node)
            return;
        if(node->parent)
            push_from_root(node->parent);
        node->push();
    }
    void splay(Node *me, bool push_from_root_done = false) {
        if(push_from_root_done)
            me->push();
        else
            push_from_root(me);
        while(me->parent) {
            Node *p = me->parent, *pp = p->parent;
            if(me->parent->state() == 0) {
                rotate(me);
                p->update();
                break;
            } else if(me->state() == me->parent->state()) {
                rotate(me->parent), rotate(me);
            } else {
                rotate(me), rotate(me);
            }
            pp->update(), p->update();
        }
        me->update();
    }
    Node *splay_kth(int k, Node *node) {
        assert(0 <= k and k < node->size);
        while(1) {
            node->push();
            int l_size = node->left ? node->left->size : 0;
            if(k < l_size) {
                node = node->left;
            } else if(k == l_size) {
                splay(node, true);
                return node;
            } else {
                k -= l_size + 1;
                node = node->right;
            }
        }
    }
    Node *merge(Node *l_root, Node *r_root) {
        if(!l_root)
            return r_root;
        if(!r_root)
            return l_root;
        l_root = splay_kth(l_root->size - 1, l_root);
        l_root->update();
        l_root->right = r_root;
        r_root->parent = l_root;
        l_root->update();
        return l_root;
    }
    pair<Node *, Node *> split(int l_size, Node *node) {
        if(l_size == 0)
            return {nullptr, node};
        if(l_size == node->size)
            return {node, nullptr};
        node = splay_kth(l_size, node);
        Node *l, *r;
        l = node->left, r = node;
        r->left = l->parent = nullptr;
        r->update();
        return {l, r};
    }
    Node *insert(int k, Node *node, Node *root) {
        Node *l, *r;
        tie(l, r) = split(k, root);
        return merge(merge(l, node), r);
    }
    pair<Node *, Node *> remove(int k, Node *node) {
        node = splay_kth(k, node);
        Node *l = node->left, *r = node->right;
        if(l)
            l->parent = nullptr;
        if(r)
            r->parent = nullptr;
        node->left = node->right = nullptr;
        node->update();
        return {merge(l, r), node};
    }
    vector<pNode> pool;
    Node *root;
    void between(Node *&l_root, Node *&c_root, Node *&r_root, int l, int r) {
        // c_rootуВТ[l,r)уБощГихИЖцЬиуБоца╣уБиуБЧуБжsplitуАБl,r_rootуБпх╖жхП│уБоцЬиуБоца╣
        // хС╝уБ│хЗ║уБЧуБЯуБВуБиmergeуБЧуБжrootуВТуБНуБбуВУуБицЫ┤цЦ░уБЩуВЛ
        tie(c_root, r_root) = split(r, root);
        tie(l_root, c_root) = split(l, c_root);
        return;
    }

  public:
    void insert_at(int k, const S &s) {
        pool.push_back(move(make_unique<Node>(s)));
        // тЖСmoveуБДуВЛя╝Я
        Node *node = pool.back().get();
        root = insert(k, node, root);
    }
    void remove_at(int k) {
        root = remove(k, root).first;
        // .secondуБпцФ╛ч╜оуБХуВМуБжуБ╛уБЩуБМ...
    }
    void set(int k, const S &s) {
        root = splay_kth(k, root);
        root->a = s;
        root->update();
    }
    int size() { return root ? root->size : 0; }
    S get(int k) {
        root = splay_kth(k, root);
        return root->a;
    }
    S prod(int l, int r) {
        if(l == r)
            return e();
        Node *l_root, *c_root, *r_root;
        between(l_root, c_root, r_root, l, r);
        S res = c_root->prod;
        root = merge(merge(l_root, c_root), r_root);
        return res;
    }
    void reverse(int l, int r) {
        if(l == r)
            return;
        Node *l_root, *c_root, *r_root;
        between(l_root, c_root, r_root, l, r);
        c_root->reverse();
        root = merge(merge(l_root, c_root), r_root);
    }
    void apply(int l, int r, F f) {
        if(l == r)
            return;
        Node *l_root, *c_root, *r_root;
        between(l_root, c_root, r_root, l, r);
        c_root->apply(f);
        root = merge(merge(l_root, c_root), r_root);
    }

    SplayTree() : root(nullptr) {}
    SplayTree(const vector<S> &v) : root(nullptr) {
        Node *prev = nullptr;
        for(const auto &s : v) {
            pool.push_back(move(make_unique<Node>(s)));
            Node *node = pool.back().get();
            if(prev)
                prev->parent = node;
            node->left = prev;
            node->update();
            root = prev = node;
        }
    }
};
#line 3 "test/library_checker/data_structure/dynamic_sequence_range_affine_range_sum.test.cpp"
#include <atcoder/modint>
using mint = atcoder::modint998244353;
struct S {
    mint a, sz;
};
static S op(S s, S t) { return S(s.a + t.a, s.sz + t.sz); }
static S e() { return S(0, 0); }
struct F {
    mint b, c;
    bool operator==(const F &other) const {
        return b == other.b && c == other.c;
    }
};
static S mapping(F f, S s) { return S(f.b * s.a + f.c * s.sz, s.sz); }
static F composition(F f, F g) {
    // composition(f,g)(s) = f(g(s))
    return F(f.b * g.b, f.b * g.c + f.c);
}
static F id() { return F(1, 0); }

void solve() {
    LL(n, q);
    vector<S> v(n);
    rep(i, n) {
        LL(val);
        v[i] = S(val, 1);
    }
    SplayTree<S, op, e, F, mapping, composition, id> st(v);
    rep(t, q) {
        LL(flag);
        if(flag == 0) {
            LL(i, x);
            st.insert_at(i, S(x, 1));
        } else if(flag == 1) {
            LL(i);
            st.remove_at(i);
        } else if(flag == 2) {
            LL(l, r);
            st.reverse(l, r);
        } else if(flag == 3) {
            LL(l, r, b, c);
            st.apply(l, r, F(b, c));
        } else {
            LL(l, r);
            print(st.prod(l, r).a.val());
        }
    }
}

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    solve();
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 4 ms 4 MB
g++ extreme_insertion_00 :heavy_check_mark: AC 46 ms 39 MB
g++ extreme_insertion_01 :heavy_check_mark: AC 57 ms 39 MB
g++ extreme_insertion_02 :heavy_check_mark: AC 56 ms 39 MB
g++ max_00 :heavy_check_mark: AC 894 ms 78 MB
g++ max_01 :heavy_check_mark: AC 488 ms 43 MB
g++ max_02 :heavy_check_mark: AC 1292 ms 43 MB
g++ max_03 :heavy_check_mark: AC 1418 ms 43 MB
g++ max_04 :heavy_check_mark: AC 1217 ms 43 MB
g++ max_random_00 :heavy_check_mark: AC 1238 ms 51 MB
g++ max_random_01 :heavy_check_mark: AC 1175 ms 50 MB
g++ max_random_02 :heavy_check_mark: AC 1212 ms 50 MB
g++ random_00 :heavy_check_mark: AC 942 ms 40 MB
g++ random_01 :heavy_check_mark: AC 981 ms 49 MB
g++ random_02 :heavy_check_mark: AC 606 ms 13 MB
g++ random_03 :heavy_check_mark: AC 98 ms 37 MB
g++ random_04 :heavy_check_mark: AC 218 ms 26 MB
g++ small_00 :heavy_check_mark: AC 5 ms 4 MB
g++ small_01 :heavy_check_mark: AC 4 ms 4 MB
g++ small_02 :heavy_check_mark: AC 4 ms 4 MB
g++ small_03 :heavy_check_mark: AC 4 ms 4 MB
g++ small_04 :heavy_check_mark: AC 5 ms 4 MB
g++ small_05 :heavy_check_mark: AC 4 ms 4 MB
g++ small_06 :heavy_check_mark: AC 4 ms 4 MB
g++ small_07 :heavy_check_mark: AC 4 ms 4 MB
g++ small_08 :heavy_check_mark: AC 4 ms 4 MB
g++ small_09 :heavy_check_mark: AC 4 ms 4 MB
g++ wrong_avl_killer_00 :heavy_check_mark: AC 57 ms 39 MB
g++ wrong_avl_killer_01 :heavy_check_mark: AC 60 ms 39 MB
g++ wrong_splay_killer_00 :heavy_check_mark: AC 80 ms 21 MB
g++ wrong_splay_killer_01 :heavy_check_mark: AC 88 ms 21 MB
g++ wrong_splay_killer_02 :heavy_check_mark: AC 89 ms 21 MB
g++ wrong_splay_killer_03 :heavy_check_mark: AC 103 ms 21 MB
Back to top page