:heavy_check_mark: test/library_checker/polynomial/log_of_formal_power_series.test.cpp

Depends on

Code

// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/log_of_formal_power_series
#include "../../../poly/formal-power-series.hpp"
#include "../../../template.hpp"
#include <atcoder/modint>
using mint = atcoder::modint998244353;
int main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    INT(n);
    FormalPowerSeries<mint> a(n);
    rep(i, n) {
        INT(ai);
        a[i] = ai;
    }
    a = a.log(n);
    print(a);
}
#line 1 "test/library_checker/polynomial/log_of_formal_power_series.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/log_of_formal_power_series
#line 2 "other/fastio.hpp"
// ref: https://maspypy.com/library-checker-many-a-b , Nyaanさん
#line 2 "other/type-utils.hpp"
#include <bits/stdc++.h>
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = std::vector<int>;
using vii = std::vector<std::vector<int>>;
using pii = std::pair<int, int>;
using vl = std::vector<ll>;
using vll = std::vector<vl>;
using pll = std::pair<ll, ll>;

template <class T>
concept extended_integral =
    std::integral<T> || std::same_as<std::remove_cv_t<T>, i128> ||
    std::same_as<std::remove_cv_t<T>, u128>;
template <class T>
concept extended_signed_integral =
    std::signed_integral<T> || std::same_as<std::remove_cv_t<T>, i128>;
template <class T>
concept extended_unsigned_integral =
    std::unsigned_integral<T> || std::same_as<std::remove_cv_t<T>, u128>;

template <class T>
concept Streamable =
    requires(std::ostream &os, T &x) { os << x; } || extended_integral<T>;
template <class mint>
concept is_modint = requires(mint &x) {
    { x.val() } -> std::convertible_to<int>;
};
#line 4 "other/fastio.hpp"
namespace fastio {
constexpr int SZ = 1 << 17;
constexpr int offset = 64;
constexpr int mod = 10000;
char in_buf[SZ];
int in_left{}, in_right{};
char out_buf[SZ];
char out_tmp[offset];
int out_right{};
struct Pre {
    char num[4 * mod]{};
    constexpr Pre() {
        for(int i = 0; i < mod; ++i) {
            for(int n = i, j = 3; j >= 0; --j, n /= 10)
                num[4 * i + j] = '0' + n % 10;
        }
    }
    constexpr const char *operator[](int i) const { return &num[4 * i]; }
} constexpr pre;
void load() {
    memmove(in_buf, in_buf + in_left, in_right - in_left);
    in_right += -in_left + std::fread(in_buf + in_right - in_left, 1,
                                      SZ - (in_right - in_left), stdin);
    in_left = 0;
    if(in_right < SZ)
        in_buf[in_right++] = '\n';
}
void read(char &c) {
    do {
        if(in_left == in_right)
            load();
        c = in_buf[in_left++];
    } while(isspace(c));
}
void read(std::string &s) {
    s.clear();
    char c;
    do {
        if(in_left == in_right)
            load();
        c = in_buf[in_left++];
    } while(isspace(c));
    do {
        s += c;
        if(in_left == in_right)
            load();
        c = in_buf[in_left++];
    } while(!isspace(c));
}
template <extended_integral T> void read(T &x) {
    if(in_right - in_left < offset)
        load();
    char c;
    do
        c = in_buf[in_left++];
    while(c < '-'); // \n:10 space:32 -:45 '0':48
    bool minus{};
    if constexpr(extended_signed_integral<T>) {
        if(c == '-') {
            c = in_buf[in_left++];
            minus = true;
        }
    }
    x = 0;
    while(c >= '0') {
        x = 10 * x + (c & 15);
        c = in_buf[in_left++];
    }
    if constexpr(extended_signed_integral<T>) {
        if(minus)
            x = -x;
    }
}
void flush() { fwrite(out_buf, 1, std::exchange(out_right, 0), stdout); }
void write_range(const char *c, int n) {
    int pos{};
    while(pos < n) {
        if(out_right == SZ)
            flush();
        int len = std::min(n - pos, SZ - out_right);
        memcpy(out_buf + out_right, c + pos, len);
        out_right += len;
        pos += len;
    }
}

void write(char c) {
    if(SZ == out_right)
        flush();
    out_buf[out_right++] = c;
}
void write(const char *c) { write_range(c, strlen(c)); }
void write(const std::string &s) { write_range(s.data(), s.size()); }
template <std::floating_point T> void write(T x) {
    int n = std::snprintf(out_tmp, sizeof(out_tmp), "%.16g", x);
    write_range(out_tmp, n);
}
void write(bool x) { write(x ? '1' : '0'); }
template <extended_integral T> void write(T x) {
    if(x == 0) {
        write('0');
    }
    if constexpr(extended_signed_integral<T>) {
        if(x < 0) {
            write('-');
            x = -x;
        }
    }
    if(SZ - out_right < offset)
        flush();
    int cur = offset;
    for(; x >= 1000; x /= mod) {
        cur -= 4;
        memcpy(out_tmp + cur, pre[x % mod], 4);
    }
    if(x >= 100) {
        cur -= 3;
        memcpy(out_tmp + cur, pre[x % mod] + 1, 3);
    } else if(x >= 10) {
        cur -= 2;
        memcpy(out_tmp + cur, pre[x % mod] + 2, 2);
    } else if(x >= 1) {
        cur -= 1;
        memcpy(out_tmp + cur, pre[x % mod] + 3, 1);
    }
    write_range(out_tmp + cur, offset - cur);
}
struct Dummy {
    // プログラム終了時に出力
    ~Dummy() { flush(); }
} dummy;
} // namespace fastio
using fastio::write;
#line 4 "template.hpp"
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#line 8 "template.hpp"
using namespace std;
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...)
#endif
template <Streamable T> void print_one(const T &value) { fastio::write(value); }
template <is_modint T> void print_one(const T &value) {
    print_one(value.val());
}
void print() { print_one('\n'); }
template <class T, class... Ts> void print(const T &a, const Ts &...b) {
    print_one(a);
    ((print_one(' '), print_one(b)), ...);
    print();
}
template <ranges::range Iterable>
    requires(!Streamable<Iterable>)
void print(const Iterable &v) {
    for(auto it = v.begin(); it != v.end(); ++it) {
        if(it != v.begin())
            print_one(' ');
        print_one(*it);
    }
    print();
}
#define all(v) begin(v), end(v)
template <class T> void UNIQUE(T &v) {
    ranges::sort(v);
    v.erase(unique(all(v)), end(v));
}
template <typename T> inline bool chmax(T &a, T b) {
    return ((a < b) ? (a = b, true) : (false));
}
template <typename T> inline bool chmin(T &a, T b) {
    return ((a > b) ? (a = b, true) : (false));
}
// https://trap.jp/post/1224/
template <class... T> constexpr auto min(T... a) {
    return min(initializer_list<common_type_t<T...>>{a...});
}
template <class... T> constexpr auto max(T... a) {
    return max(initializer_list<common_type_t<T...>>{a...});
}
void input() {}
template <class Head, class... Tail> void input(Head &head, Tail &...tail) {
#ifdef LOCAL
    cin >> head;
#else
    fastio::read(head);
#endif
    input(tail...);
}
template <class T> void input(vector<T> &a) {
    for(T &x : a)
        input(x);
}
#define INT(...)                                                               \
    int __VA_ARGS__;                                                           \
    input(__VA_ARGS__)
#define LL(...)                                                                \
    long long __VA_ARGS__;                                                     \
    input(__VA_ARGS__)
#define STR(...)                                                               \
    string __VA_ARGS__;                                                        \
    input(__VA_ARGS__)
#define REP1_0(n, c) REP1_1(n, c)
#define REP1_1(n, c)                                                           \
    for(ll REP_COUNTER_##c = 0; REP_COUNTER_##c < (ll)(n); REP_COUNTER_##c++)
#define REP1(n) REP1_0(n, __COUNTER__)
#define REP2(i, a) for(ll i = 0; i < (ll)(a); i++)
#define REP3(i, a, b) for(ll i = (ll)(a); i < (ll)(b); i++)
#define REP4(i, a, b, c) for(ll i = (ll)(a); i < (ll)(b); i += (ll)(c))
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
ll inf = 3e18;
vl dx = {1, -1, 0, 0};
vl dy = {0, 0, 1, -1};
template <class T> constexpr T floor(T x, T y) noexcept {
    return x / y - ((x ^ y) < 0 and x % y);
}
template <class T> constexpr T ceil(T x, T y) noexcept {
    return x / y + ((x ^ y) >= 0 and x % y);
}
// yの符号に関わらず非負で定義 \bmod:texコマンド
template <class T> constexpr T bmod(T x, T y) noexcept {
    T m = x % y;
    return (m < 0) ? m + (y > 0 ? y : -y) : m;
}
template <std::signed_integral T> constexpr int bit_width(T x) noexcept {
    return std::bit_width((uint64_t)x);
}
template <std::signed_integral T> constexpr int popcount(T x) noexcept {
    return std::popcount((uint64_t)x);
}
constexpr bool kth_bit(auto n, auto k) { return (n >> k) & 1; }
#line 3 "poly/formal-power-series.hpp"
#include <atcoder/convolution>
// 10^9+7みたいなときconvolutionどうする?
template <class mint> struct FormalPowerSeries : vector<mint> {
    using vector<mint>::vector;
    using FPS = FormalPowerSeries;
    FormalPowerSeries(const vector<mint> &v) : vector<mint>(v) {}
    FPS &operator+=(const FPS &f) {
        if(this->size() < f.size())
            this->resize(f.size());
        for(int i = 0; i < ssize(f); ++i)
            (*this)[i] += f[i];
        return *this;
    }
    FPS &operator-=(const FPS &f) {
        if(this->size() < f.size())
            this->resize(f.size());
        for(int i = 0; i < ssize(f); ++i)
            (*this)[i] -= f[i];
        return *this;
    }
    FPS &operator*=(const FPS &f) {
        if constexpr(is_same_v<mint, long long>) {
            return (*this) = atcoder::convolution_ll(*this, f);
        } else {
            return (*this) = atcoder::convolution(*this, f);
        }
    }
    FPS &operator*=(const mint &x) {
        for(mint &vi : *this)
            vi *= x;
        return *this;
    }
    FPS operator+(const FPS &f) const { return FPS(*this) += f; }
    FPS operator-(const FPS &f) const { return FPS(*this) -= f; }
    FPS operator*(const FPS &f) const { return FPS(*this) *= f; }
    FPS operator*(const mint &x) const { return FPS(*this) *= x; }
    FPS operator-() const {
        FPS res = *this;
        for(mint &vi : res) {
            vi = -vi;
        }
        return res;
    }
    FPS operator>>(const int sz) const {
        if(sz >= ssize(*this))
            return {};
        FPS res(begin(*this) + sz, end(*this));
        return res;
    }
    FPS operator<<(const int sz) const {
        FPS res(sz, 0);
        res.insert(end(res), begin(*this), end(*this));
        return res;
    }
    FPS inv(int deg = -1) const {
        assert(!this->empty() and (*this)[0] != mint(0));
        if(deg == -1)
            deg = this->size();
        FPS res = {(*this)[0].inv()};
        FPS f;
        f.reserve(this->size());
        for(int d = 1; d < deg << 1; d <<= 1) {
            while(ssize(f) < min(ssize(*this), d))
                f.emplace_back((*this)[f.size()]);
            res *= (FPS({2}) - f * res);
            while(ssize(res) > min(d, deg))
                res.pop_back();
        }
        return res;
    }
    // なければ空を返す
    // 定数項が1でないときget_sqrtを渡す。解が複数ありうることに注意
    FPS sqrt(
        int deg = -1,
        function<mint(mint)> get_sqrt = [](mint) { return mint(1); }) const {
        if(this->empty())
            return {};
        if(deg == -1)
            deg = this->size();
        if((*this)[0] == mint(0)) {
            for(int i = 1; i < ssize(*this); ++i) {
                if((*this)[i] == mint(0))
                    continue;
                if(i & 1)
                    return {};
                if(i / 2 >= deg)
                    break;
                FPS res = (*this >> i).sqrt(deg - i / 2, get_sqrt);
                if(res.empty())
                    return {};
                res = res << (i / 2);
                return res;
            }
            return FPS(deg, 0);
        }
        FPS res{get_sqrt((*this)[0])};
        if(res[0] * res[0] != (*this)[0])
            return {};
        FPS f;
        f.reserve(this->size());
        mint inv2 = mint(1) / mint(2);
        for(int d = 1; d < deg << 1; d <<= 1) {
            while(ssize(f) < min(ssize(*this), d))
                f.emplace_back((*this)[f.size()]);
            res = (res + f * res.inv(d)) * inv2;
            while(ssize(res) > min(d, deg))
                res.pop_back();
        }
        return res;
    }
    FPS diff() const {
        FPS res(max<int>(0, ssize(*this) - 1));
        for(int i = 1; i < ssize(*this); ++i)
            res[i - 1] = (mint)i * (*this)[i];
        return res;
    }
    FPS integral() const {
        FPS res(ssize(*this) + 1);
        for(int i = 0; i < ssize(*this); ++i)
            res[i + 1] = (*this)[i] / mint(i + 1);
        return res;
    }
    FPS log(int deg = -1) const {
        assert(!this->empty() and (*this)[0] == (mint)1);
        if(deg == -1)
            deg = this->size();
        if(deg == 0)
            return {};
        FPS t(begin(*this), begin(*this) + min<int>(deg, ssize(*this)));
        FPS res = t.diff() * t.inv(deg - 1);
        res.resize(deg - 1);
        return res.integral();
    }
    FPS exp(int deg = -1) {
        assert(!this->empty() and (*this)[0] == (mint)0);
        if(deg == -1)
            deg = this->size();
        if(deg == 0)
            return {};
        FPS res = {1};
        FPS f;
        f.reserve(this->size());
        for(int d = 1; d < deg << 1; d <<= 1) {
            while(ssize(f) < min(ssize(*this), d))
                f.emplace_back((*this)[f.size()]);
            res *= (FPS({1}) + f - res.log(d));
            while(ssize(res) > min(d, deg))
                res.pop_back();
        }
        return res;
    }
};
#line 4 "test/library_checker/polynomial/log_of_formal_power_series.test.cpp"
#include <atcoder/modint>
using mint = atcoder::modint998244353;
int main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    INT(n);
    FormalPowerSeries<mint> a(n);
    rep(i, n) {
        INT(ai);
        a[i] = ai;
    }
    a = a.log(n);
    print(a);
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 5 ms 4 MB
g++ max_all_zero_00 :heavy_check_mark: AC 364 ms 32 MB
g++ max_random_00 :heavy_check_mark: AC 386 ms 32 MB
g++ max_random_01 :heavy_check_mark: AC 387 ms 32 MB
g++ max_random_02 :heavy_check_mark: AC 386 ms 32 MB
g++ max_random_03 :heavy_check_mark: AC 385 ms 32 MB
g++ max_random_04 :heavy_check_mark: AC 386 ms 32 MB
g++ near_262144_00 :heavy_check_mark: AC 197 ms 18 MB
g++ near_262144_01 :heavy_check_mark: AC 196 ms 18 MB
g++ near_262144_02 :heavy_check_mark: AC 197 ms 18 MB
g++ random_00 :heavy_check_mark: AC 365 ms 28 MB
g++ random_01 :heavy_check_mark: AC 377 ms 31 MB
g++ random_02 :heavy_check_mark: AC 48 ms 7 MB
g++ random_03 :heavy_check_mark: AC 371 ms 29 MB
g++ random_04 :heavy_check_mark: AC 342 ms 25 MB
g++ small_degree_00 :heavy_check_mark: AC 5 ms 4 MB
g++ small_degree_01 :heavy_check_mark: AC 4 ms 4 MB
g++ small_degree_02 :heavy_check_mark: AC 4 ms 3 MB
g++ small_degree_03 :heavy_check_mark: AC 4 ms 4 MB
g++ small_degree_04 :heavy_check_mark: AC 4 ms 4 MB
g++ small_degree_05 :heavy_check_mark: AC 4 ms 4 MB
g++ small_degree_06 :heavy_check_mark: AC 4 ms 3 MB
g++ small_degree_07 :heavy_check_mark: AC 4 ms 4 MB
g++ small_degree_08 :heavy_check_mark: AC 4 ms 4 MB
g++ small_degree_09 :heavy_check_mark: AC 4 ms 4 MB
Back to top page